
 

 

 

  

Ben Putman, M. S. 

Jacob Hickman 

Prathamesh Bandekar, M. S. 

Marty Matlock, PhD., P. E. 

Greg Thoma, Ph.D., P.E. 

July 7, 2018 

A Retrospective Assessment of  
US Pork Production: 1960 to 2015 

 
Final Report 



Page | ii 
 

 

Executive Summary 
1 Introduction 

The primary goal of this study is to assess the carbon, energy, water and land footprints per kg 

(2.2 pounds) of live weight (LW) pork produced at five-year increments between 1960 and 2015. This 

assessment utilizes the Life Cycle Assessment (LCA) methodology, which is a technique to assess the 

potential environmental impacts associated with a product system by compiling an inventory of relevant 

energy and material flows, evaluating the associated burdens, and interpreting the results to assist in 

making more informed decisions and to provide an understanding of the drivers of change over the past 

55 years. This LCA is “cradle-to-farm gate” e.g. covering the material and energy flows associated with 

the full supply chain beginning with extraction of raw materials through the production of live, market-

weight swine, inclusive of culled sows, at the farm gate. On average, production-weighted metrics 

declined across all four categories over the assessment period. The largest decrease was seen in land use 

(75.9 percent), followed by water use (25.1 percent), then global warming potential (7.7 percent), and 

finally energy use (7.0 percent).  

2 Methods 

The life cycle inventory (LCI) data for this assessment were established using a variety of sources 

including peer-reviewed literature, industry reports, government databases, and the Pork Production 

Environmental Footprint Calculator (PPEFC). These sources informed the calculation of LCI values 

through a multi-step modeling process in which literature references supported the creation of live swine 

production simulations in the PPEFC. These simulations were created to represent typical swine farms, 

during each of the five-year increments of the study, in the PPEFC. The outputs from the PPEFC were 

then imported to SimaPro software to conduct the impact assessment portion of this LCA. A database was 

created across all production states and counties included in the evaluation to store demographic 

production data in the five-year increments necessary for the assessment. 

2.1 Standard Swine Farms 
Three categories of data were required to build the standard types of swine farms in the PPEFC: 

production locations (to determine the weather), animal characteristics, and production facility 

characteristics. These data were used to generate input farm files for the PPEFC. Each farm file included 
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both sow barns and grow-finish barns, the number of each barn type was determined by the year and 

county simulated, based on the USDA report of market and breeding inventory. Sow barns simulated 

gestation and lactation phases and produced weaned piglets and culled sows. Grow-finish barns simulated 

pig growth and performance from weaning to market weight. 

2.1.1 Production locations 
States included in this study were selected based on their total hog inventories from 1960 to 2015. 

The cumulative production of the states selected for simulations represented 90 percent of national swine 

production during each year of the study period. Once the list of states for the study period was 

determined, a subset of counties from each state were selected based on their total inventory in each of the 

simulation years. Counties were included in the analysis if they had the largest total inventory, for that 

state, in any given simulation year throughout the assessment period. Thus, a county selected for any of 

the simulation years remained in the list of counties for all simulation years unless the inventory in that 

county dropped to zero. After discussion with industry experts, several more counties were added to 

create a more robust geographic representation in states where the top counties were isolated to one area 

of that state. The final list of states and the number of counties used for simulations in each are presented 

in Table ES 1.  

2.1.2 Animal characteristics 
Grow-finish barns in each simulation year assumed incoming piglets weighed approximately 13 

lbs. In 1960, hogs were finished at 200 lbs.; Finishing weights increased steadily over the assessment 

period and reached 282 lbs. in 2015. As finishing weights increased, feed conversion ratio (FCR) also 

improved. In 1960, the average FCR was estimated to be 4.5 lbs. of feed per pound of LW produced. By 

2015, the FCR had improved to 2.8. Mortality rates in the grow-finish barn were simulated to be 

approximately 2 percent for a majority of the assessment period due to a lack of historical data. In recent 

Table ES 1. A list of the states considered for this assessment and the subsequent number of counties 
within each state that were simulated. 

              

State Counties  State Counties  State Counties 
Alabama 6  Kentucky 4  Oklahoma 3 
Arkansas 4  Michigan 2  Pennsylvania 1 
Colorado 4  Minnesota 5  South Carolina 6 
Georgia 5  Mississippi 3  South Dakota 3 
Illinois 13  Missouri 7  Tennessee 3 
Indiana 1  Nebraska 4  Texas 4 

Iowa 8  North Carolina 2  Virginia 3 
Kansas 4  Ohio 3  Wisconsin 1 
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years, data suggest an increase in the mortality rate, which peaks at 8.3 percent in 2015, likely associated 

with PEDV. Key performance characteristics simulated in the grow-finish barns are presented in Table 

ES 2. 

The piglets produced per sow and the number of piglets that survived to weaning increased over 

the assessment period. In 1960, sows were simulated as having 10 piglets per litter with seven surviving 

to weaning. By 2015, those numbers increased to 13.5 and 10, respectively. We assumed that the 

replacement rate of sows in the sow barns remained relatively constant over the assessment period at 50 

percent annually; however, the mortality rate for sows varied throughout the years. The performance 

characteristics simulated in the sow barns are presented in Table ES 2. 

2.1.3 Production facilities 

The PPEFC was not designed to model extensive, pasture-based, systems that were common 

farming practice in the 1960s, thus, to construct representative simulations for the reference years 1960, 

1965, and 1970, we simulated grow-finish and sow barns using the “hoop barn” designation. We set hoop 

barn parameters to exclude fans and lights, piglet cooling equipment, and set the R-value of the walls and 

ceiling to 0. The only energy use for these systems was associated with piglet heaters in the sow barn. By 

1975, hog farming was becoming more technologically advanced, and the number of pigs produced per 

farm increased as more permanent pig production facilities were constructed. The growth in swine farms 

during the 1970s occurred primarily in the Southeast, as hog farming spread outside of the Corn Belt. 

Table ES 2. National average performance characteristics simulated in Grow-finish and Sow barns 
for each reference year. 

         

Year 

Grow –
finish 

mortality 
(% pigs) 

FCR ADG 
(lbs./day) 

Market 
weight 

(kg) 

Days on 
feed 

Piglets 
per litter 

Weaned 
piglets 

per litter 

Sow barn 
mortality 

(% annual) 

1960 1.8% 4.5 1.6 90.7 124.5 10.0 7.0 3.0% 
1965 1.7% 4.6 1.6 95.3 134.2 10.1 7.2 3.0% 
1970 1.7% 4.7 1.3 99.8 163.4 9.8 7.3 3.0% 
1975 1.4% 4.7 1.4 105.2 162.9 9.2 7.3 3.0% 
1980 1.4% 3.9 1.5 103.0 148.3 10.4 7.5 6.0% 
1985 1.7% 4.1 1.5 103.0 155.3 9.2 7.3 6.0% 
1990 2.0% 4.4 1.4 112.9 178.3 10.3 8.4 6.0% 
1995 2.1% 3.5 1.8 116.1 142.5 10.0 8.5 9.0%** 
2000 2.7% 3.2 1.8 118.8 146.2 10.8 8.8 12.0%** 
2005 1.7% 3.0 1.7 122.0 162.4 11.8 9.4 1.0%** 
2010 4.3% 2.8 1.6 121.9 168.3 13.0 10.0 3.0% 
2015 1.7% 2.8 1.6 127.6 172.9 13.5 10.0 3.0% 
** the fluctuations in sow mortality are primarily the result of changes in the reporting categories. The 
simulations in each year assumed a 50% replacement rate for sows (death + marketed). This variability falls 
below the 1% threshold requiring higher resolution data. 
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These newer operations were markedly different than their Midwestern counterparts, making use of solid 

walled construction, and mechanized cooling, which were reflected in the Southern county simulations. 

These types of production facilities make up a greater portion of the farm simulations over the course of 

the assessment period, reaching 100 percent confinement in 1990. 

Figure ES 1 shows the evolution of manure management systems with significant use of solid 

storage until about 1980 when anaerobic lagoons and deep-pit systems become more widespread. 

Regarding the emissions associated with manure management, in this analysis we have included the 

emissions from field application of manure after the on-farm treatment or storage stage. This accounting 

ensures a consistent system boundary across the entire temporal series.  

2.2  Rations 
Feed rations for the PPEFC were based on recommended rations and the individual ingredients’ 

nutritional values published by the National Research Council (NRC) in the Nutrient Requirements of 

Swine publications. The initial ration formulation and list of ingredients was adopted from the 2nd edition 

(1973) as it was earliest edition available. That initial formulation was used in the simulations for 1960 

through 1975, and for subsequent years, the edition published closest to the reference year was used. Feed 

Figure ES 1. Distribution of hogs among manure management systems. State-level data regarding 
number and type of manure management was used in simulations. Here is inventory-weighted distribution 
of manure management at national level. 
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rations were formulated using the NRC nutrient requirements and an initial set of ingredients, which 

primarily consisted of corn, soybean meal, minerals, and vitamins (Table ES 3). For sow barn rations, we 

formulated two distinct rations: for gestating sows and for lactating sows. For grow-finish barn rations, 

we formulated multiphase rations that followed the number of phases given in the NRC publication of 

reference to reach the market weight of each simulation year. While swine diets have become more 

homogenous over time, corn and soybean-based diets have been commonly fed to pigs since 1960. As 

such, those two commodities were selected as the primary ration constituents for the entire assessment 

timeframe; however, the list of included ingredients was expanded during the later-year simulations to 

include distiller’s grains. Using information available in the literature and consultation with industry 

experts, the list of ingredients for rations was expanded according to common practice at the time.  

Table ES 3 presents the ration ingredients and the year of their inclusion in the simulated rations. 

Except for the inclusion of dried distillers’ grains (DDGS) into diets, we did not formulate rations with 

different ingredients within the same reference year and for the same barn type. That is to say, all grow-

finish barns in any given year, regardless of location, used the same ration. A spreadsheet-based least-cost 

Table ES 3. A list of the changes made to the base ration over the assessment period and the 
simulation year in which those changes were implemented. 

Simulation year Description 

1960 Base ration formulated using guidelines from NRC (NRC 1973). Includes 
corn, soybean meal, dicalcium phosphate, limestone, salt, vitamin/mineral mix 

1970 Addition of poultry fat and two crystalline amino acids (Lysine and 
Methionine) 

1980 Rations reformulated using updated nutrient recommendations (NRC 1979) 

1985 Addition of two more crystalline amino acids (Tryptophan and Threonine) 

1990 Rations reformulated using updated nutrient recommendations (NRC 1988) 

1995 Soybean meal changed to de-hulled, moving from 44 percent to 48 percent 
crude protein 

2000 Addition of Ractopamine into grow-finish barn rations, updated nutrient 
requirements (NRC 1998) 

2005 Addition of DDGS 

2010 Addition of crystalline amino acid Valine and updated nutrient requirements 
(NRC 2012) 
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ration formulation tool known as WUFFDA1 was used to formulate each ration based on nutrient 

requirements and allowable ingredient inclusion rates for each of the grow-finish and sow barn rations in 

a given simulation year. Nutrient requirements for each phase were entered into the WUFFDA calculator 

along with the list of available ingredients. Each available ingredient was assigned a set of parameters 

which described its nutrient contents, its minimum and maximum inclusion rates for each phase, and its 

price. The WUFFDA calculator performs a least cost ration formulation subject to the constraints above. 

We used the nutrient profiles of each ingredient from the same NRC publication which informed 

the swine nutrient requirements for that simulation year. The price data was primarily informed by data 

from the USDA Economic Research Service. In the event that data were not available for the entire time 

period of this assessment, prices were linearly interpolated to fill in the price data for missing years. 

2.3 Feeds 
In general, there were three classes of feeds that required time-dependent models: crops, poultry 

by-products, and non-agriculture feeds. The methodological guidelines we followed in creating 

production models for each of the simulation years are outlined in the following sections. 

2.3.1 Crops 
Life cycle inventory (LCI) data for crop production were collected from each of the top five corn 

and soybean producing states in the United States. Illinois, Indiana, Iowa, Minnesota, and Nebraska were 

the top five throughout the assessment period, and collectively they produced 59 to 68 percent and 47 to 

61 percent of all U.S. corn and soybeans, respectively. USDA census and survey data from these states 

were used to determine LCI data for yield, irrigation water, fertilizers, and pesticides. Emissions 

associated with nitrogen fertilizer applications and crop residues were calculated using IPCC methods. 

Fuel use associated with planting, irrigating, and harvesting was estimated using crop budgets published 

by extension services in each of the five states. Since historic crop budgets were not available, fuel use 

was adjusted for each simulation year according data from tractor efficiency tests published by the 

Nebraska Tractor Test Lab. Data from all five states were used to create production-weighted LCI models 

for corn and soybean cultivation, representing national production during each simulation period.   

2.3.2 Non-agricultural feedstuffs 
Non-agricultural feeds like vitamins and minerals were represented by unit processes from the 

U.S. Ecoinvent database (USEI) v2.2. We assumed impacts associated with the production of these items 

                                                      
 

1 https://goo.gl/So7nqn 
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remained constant over the assessment period. While this is likely to underestimate their contribution to 

potential impacts, particularly in the earlier simulation years, it is unlikely to undermine the robustness of 

conclusions drawn from the results of this assessment as these items are consumed in such small 

quantities and do not contribute significantly to environmental impacts associated with pork production. 

2.4 Background systems 
The USEI database was used to estimate the upstream impacts associated with background 

systems, i.e. energy, transportation, and raw material production. Many of the standard unit processes 

within the database were adapted to reflect the changes in efficiency over time. Using historical data, 

regression equations were developed and applied to unit processes such that the efficiency could be 

adjusted to represent each simulation year. For example, a report by the International Fertilizer Industry 

Association provided the energy efficiency of ammonia production plants from 1955 to 2008. The data in 

this report was used to derive a regression equation relating production efficiency to simulation year. This 

equation produced scaling factors for each simulation year, which were applied to the energy 

requirements within the USEI unit processes for nitrogen fertilizer production; thus, we have 

approximated the technology and efficiency gains in the supply chain over the timeframe of the study. 

Table ES 4 provides a list of all the types of processes that were adapted and the underlying sources of 

data. Production efficiencies of all other processes not listed in Table ES 4 were assumed to be constant 

over the assessment period; however, the composition of power generation sources for the electricity grid 

mix was altered to represent the historical mix of a given simulation year, based on available data from 

the United States Energy Information Agency. Line losses and other conversion efficiencies were 

assumed to be the constant across all simulations.  

Table ES 4. The types of processes that were adapted to reflect changes in efficiency over the 
assessment period are presented alongside the total change in process efficiency from 1960 to 2015 
and the data source used to calculate scaling factors. 

Process Efficiency change Source 
Tractor fuel use 31% Nebraska Tractor Test Lab 
General use motors 25% Nebraska Tractor Test Lab 
Nitrogen fertilizer production 33% International Fertilizer Association 
Road transport 18% US Department of Energy 
Rail transport 209% US Department of Energy 
Water transport 69% US Department of Energy 
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3 Results and discussion 
The state-average results are presented in Figure ES 2 based on one kg LW (market plus cull 

sow) at the farm gate in five-year intervals, starting in 1960 and ending in 2015. On average, production-

weighted metrics declined across all four categories over the assessment period. The largest decrease was 

seen in land use (75.9 percent), followed by water use (25.1 percent), then GWP (7.7 percent), and finally 

energy use (7.0 percent). 

The GWP results show a notable degree of variation from 1960 to 1970 due to the extensive 

nature of pig production during those years. Manure emissions from pigs raised in warmer, southern 

states were much higher than those in the northern states because nitrogen volatilization increases with 

temperature. This variability decreases in the 1970s and 1980s as production facilities become more 

advanced and manure storage moves indoors. This transition has the opposite effect on energy use, which 

had been reasonably consistent across states but is now more variable as fully enclosed production grows 

in southern states. The more modernized facilities initially increase energy use per kg LW with increased 

electricity and propane use for climate control, but over time these technologies improve pig performance 

and decrease impacts associated with production. As production in other regions follows suit, the 

variability once again declines as facilities throughout the United States are increasingly homogeneous. 

The increase in GWP in 1970 is primarily driven by corn production, which experienced a 

drought year that drove yields down and water and energy use up because of increased irrigation. Water 

use per kg LW is predominantly driven by irrigation water used in feed production, ranging from 77 to 91 

percent of water use, depending on the year. Irrigation water use in corn and soy production in the United 

States grew throughout the 1970s and combined with the expansion of heavily irrigated agriculture in 

Nebraska, water use per kg LW saw little improvement until 1985. Starting around this time, the GWP 

began a consistent decline throughout the next several decades, as production moved indoors, and 

facilities became more advanced, allowing for greater control over the production environment. With 

improvements in facilities came improved health and nutrition and as a result, impacts per kg LW 

declined during this time in all four impact categories. 

Impacts continued to decline until 2005, which saw the introduction of DDGS into swine rations. 

The drying energy required to produce DDGS is associated with higher GHG emissions and energy use 

than the feeds that are replaced, causing a net increase in the GWP and energy use associated with pigs 

fed DDGS. Not all pig production takes place near ethanol facilities, which produce the distillers’ grains 

as a byproduct, and therefore the variability in GWP and energy use increases in the 2000s as some 

rations include DDGS and others do not. Land use associated with pig production was approximately 99 

percent from feed and this was consistent for production across the United States and throughout the 
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assessment period. The steady decline in land use is representative of the improvement in corn and 

soybean yields in the country. 
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Figure ES 2. LCIA results are presented as the state production weighted (by county) average impact per 
kg LW (including cull sows) in each state from 1965 to 2015. 
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Annual pork production increased by 84 percent from 1960 to 2015. The impact intensity (per kg 

LW) associated with that production has steadily declined (Figure ES 2); however, because of the 

significant increase in production, three of the cumulative sector impacts have declined (GWP, energy 

and water), while land use generally decreased (Figure ES 3). The GWP, water use, and land use results 

track with sectoral output in production from 1960 to 1985. Cumulative water use breaks this trend in 

1990 by declining slightly from 1985 despite an increase in production. By 1995, GWP and energy use 

also begin declining, despite further increases in annual production. This trend is reversed by 2005, which 

was the simulation year in which DDGS were added to the rations. The dramatic increase in water use in 

2005 is coincidental to the addition of DDGS but is actually driven by higher water use in corn and 

soybean production. Despite producing nearly twice as much pork in 2015 as in 1960, the total land use 

associated with live animal production in the pork industry has continually declined. Steady gains in yield 

of corn and soybeans over this period were further amplified by the improvements in FCR of pigs. As a 

result, the pork supply chain occupies less than half of the land it did in 1960. 

4 Conclusions 
The United States swine industry has experienced many structural changes over the past 55 years. 

In addition, there have been continual improvements in the background supply chain supporting swine 

production. Within the industry, there has been a major shift from extensive to intensive production 

systems which initially increased environmental burden, but ultimately led to reductions through 

improved efficiencies: improved daily gain and feed conversion as well as increased fecundity and 

decreased mortality. There has also been a shift in the manure management practices, partially driven by 

the intensification of swine production over the period coupled with increased regulation. The 

environmental impacts per produced animal and kg LW have steadily declined since 1970 - 1980; 

however, because the total output of the sector has risen dramatically over the same period, there has been 

a slowly increasing cumulative environmental impact associated with entire sector driven by large growth 

of the sector output over the period. The sector level impact is estimated by weighted averaging of the 

simulated counties for each simulation year and aggregating to national production. It is important to 

recognize that without the significant gains in reducing the footprint intensity of production that 

has occurred in the past 55 years, the cumulative environmental impacts for the whole sector would 

be much larger today. 
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Figure ES 3. Annual pork production in the U.S. from 1960 to 2015 and the associated impacts. Pork 
production is shown in million pounds of LW pigs and is inclusive of market pigs and cull animals. 
Environmental impacts are presented in terms of the total industry impact to the farm gate relative to 
1960 levels. 
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1 Introduction 
The primary goal of this study is to assess the carbon, energy, water and land footprints per kg 

(2.2 pounds) of live weight (LW) pork, inclusive of culled sows, produced at five-year increments 

between 1960 and 2015. This assessment utilizes the Life Cycle Assessment (LCA) methodology, which 

is a technique to assess the potential environmental impacts associated with a product system by 

compiling an inventory of relevant energy and material flows, evaluating the associated burdens, and 

interpreting the results to assist in making more informed decisions and to provide an understanding of 

the drivers of change over the past 55 years. This LCA is “field-to-farm gate” e.g. covering the material 

and energy flows associated with the full supply chain beginning with extraction of raw materials through 

the production of live, market-weight swine, inclusive of culled sows, at the farm gate.   

Overview of United States swine production: 1960 – 2015 

In the 1960s there were over 640,000 farms selling hogs, most of which were small extensive 

operations. By the mid-1970s, there were 200,000 fewer farms selling hogs, but the number of hogs sold 

per farm had increased. From 1960 to 1974, farms that sold 1,000 head or more increased their share of 

the market from 7 to 25 percent. During this time, the largest pig producing states were in the Midwest, 

where an abundant supply of corn provided a cheap source of feed for the animals. In 1975, the Midwest 

region accounted for 78.6 percent of live weight produced. The Southwest and Southeast regions 

produced 2.4 percent and 14.8 percent, respectively. All other regions combined produced the remaining 

4.2 percent.  

With the 1980s came the first intensive hog operations. Facilities in Nebraska, Colorado, 

Oklahoma, and Kansas were built that had the capacity to produce 300,000 hogs per year. Production was 

also expanding into the Southeast, mainly in North Carolina. By 1986, North Carolina ranked seventh 

nationwide in pork production. Despite the increase in production beyond the Midwest, the total number 

of hog farms in the United States continued to decline as the production capacity per farm expanded. 

By the mid-1990s, the total number of hog farms was still declining, reaching 150,000 in 1994. 

The United States swine industry was concentrated in a few states in the Midwest and North Carolina. 

From the mid-1980s to the mid-1990s, North Carolina moved from being the seventh to the second 

highest state for swine production. At about the same time, new regulations began to influence decisions 

regarding manure management practices (Nene et al., 2009). By the early 2000s, approximately 60 

percent of the nation’s hog inventory was concentrated in just four states: Iowa, North Carolina, 

Minnesota, and Illinois. During this period, hog inventories continued to increase in the Midwest, but 

began leveling off in North Carolina. 
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2 Methods 
Life Cycle Assessment (LCA) is a technique to assess the potential environmental impacts 

associated with a product or process by compiling a field-to-farm-gate inventory of relevant energy and 

material inputs and environmental releases, evaluating the potential environmental impacts associated 

with identified inputs and releases, and interpreting the results in relation to farm management to assist in 

making more informed decisions. Broadly, an LCA consists of four stages (Figure 1): 

1) Define the goal and scope – including appropriate metrics (e.g. greenhouse gas emissions, water 

consumption, hazardous materials generated, and/or quantity of waste); 

2) Conduct life cycle inventories (collection of data that identifies the system inputs and outputs and 

discharges to the environment); 

3) Perform impact assessment; 

4) Analyze and interpret the results. 

2.1 Goal and scope 
The primary goal of this LCA is to perform an assessment of carbon, water and land footprints 

based on a per pound of pork produced basis at five-year increments between 1960 and 2015. The LCA is 

“field-to-farm gate” e.g. covering the material and energy flows associated with the production of raw 

materials through the production of live, market-weight swine at the farm gate.  The primary audience for 

this LCA is the pork industry (growers, processors, packaging companies and retail) who may use the 

results to support internal decisions for increasing the efficiency, profitability, safety and security of the 

United States pork supply chain.  Environmental impacts associated with production of infrastructure are 

not included in the analysis. Where data are incomplete, surrogate unit operations were identified for this 

Figure 1. The stages of life cycle assessment. 
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analysis in the United States Ecoinvent v2.2 database (Frischknecht et al., 2005).  In determining whether 

to expend additional effort to obtain specific inputs, cut-off criteria were established as a 1 percent 

contribution threshold for any impact category. Nonetheless, if data were readily available, the inputs 

were included despite being below the threshold. 

2.1.1 System Boundary 
For this assessment the system boundary was defined as “field-to-farm gate”. This means that all 

inputs and emissions necessary to product 1 kg of live weight of marketed animals (finishers plus culled 

sows) are accounted in the assessment. The upstream boundary thus includes all extractions from nature 

necessary to product swine; as an example, coal mining and oil exploration are included in the upstream 

assessment of electricity and diesel fuel, respectively.  

2.1.2 Functional Unit 
For this study, the functional unit is 1 kg (2.2 lbs) live weight of marketed pig. This includes both 

finishers and cull sows. The computational structure of the lifecycle inventory model was designed to 

avoid the need for allocation between cull sows and piglets since the cull sows eventually join the 

finished animals at the harvesting stage. Because culled sows enter the food chain, we calculated impact 

metrics based on the combined marketed weight of cull sows and finished market hogs. Because each sow 

produces many market hogs, we added the estimated contribution of culled sows of approximately 6-7 kg 

of sow live weight per finished hog marketed to define the functional unit of 1 kg marketed LW. The 

amount varied depending on the year of simulation due to changing sow weights and number of live 

piglets weaned per litter.  

2.2 Life cycle inventory 
The life cycle inventory (LCI) data for this assessment were determined using a variety of sources 

including peer-reviewed literature, industry reports, government databases, and the Pork Production 

Environmental Footprint Calculator (PPEFC). These sources informed the calculation of LCI values 

through a multi-step modeling process in which literature references informed the creation of live swine 

production simulations. These simulations were created to represent typical swine farms in the PPEFC, 

the outputs from which were then imported to SimaPro to conduct the impact assessment portion of this 

LCA. The sources and methods used in the modeling process are defined in detail in the following 

sections. 

2.2.1 Live swine production 
The LCI data for pig production was produced using the PPEFC, which is a software tool that 

simulates the economic and environmental inputs and outputs associated with pork production. 
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Simulations in the PPEFC were structured such that each swine farm included a grow-finish barn and a 

sow barn. The sow barn encompassed the production of piglets from gestation and lactation of sows 

through weaning. Once piglets were weaned, they were transferred to the grow-finish barn where they 

were reared to market weight. It was assumed that incoming piglets were produced in sow barns within 

the same county. Input parameters for the PPEFC simulations were developed to represent national 

average production practices for each of the simulation years. When more detailed data were available, 

regional differences in production were incorporated. The derivation of these input parameters is 

described below. 

2.2.1.1 National inventory 

Each simulated farm in the PPEFC requires a county of production to be defined so that the 

appropriate weather files are incorporated. Creating a simulation file for each county that produced pigs 

throughout the United States across each of the twelve simulation years would be prohibitively time 

consuming; therefore, a set of locations were determined for use across all simulation years. In order to 

determine the simulation locations for the PPEFC, states analyzed during this study were selected based 

on their total hog inventories from 1960 to 2015 (Figure 2) using data from USDA surveys (USDA 

NASS, 2018a). We chose to create a set of states that represented 90 percent of swine production during 

each year of the study period. Starting in 1960, 20 states represented 92 percent of production in terms of 

total swine inventory. Production in the industry has consolidated considerably since 1960, with 20 states 

containing 97 percent of production inventory by 2015. Although fewer states are needed to reach the 90 

percent mark for every year after 1960, once a state appeared on the top 20 list in any year, it was 

included in each simulation year. Similarly, each county was kept for the all simulation periods, unless 

the number of hogs fell to zero as reported in the NASS data.  

Once the list of states for the study period was determined, counties from each state were selected 

based on total inventory that was present in the “First of December” survey period as reported by USDA 

NASS. Each county within an individual state was ranked from highest to lowest, with the total inventory 

used as the sorting variable. The top county in the list for each year of available data in each state was 

added to the list of representative counties. This list was presented to industry experts, and some 

additional counties were added to the list in states where the geographic representation was inadequate, or 

else an important country of production had not been included in the original list. The final list included 

84 counties in 24 states (Table 1 and Figure 3). 
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2.2.1.2 Weather 

The standard version of the PPEFC only contains current weather data, so once the list of 

counties was determined, a unique set of weather files needed to be created for each county and for all 

simulation years. The PPEFC utilizes weather files in ten-year increments; however, because our 

simulation years are in five-year increments, we centered the weather files around the simulation year. 

For example, simulations for 1980 relied on five-year weather files using data from 1978 to 1982. The 

calculator was used to simulate the same five-year weather pattern two times sequentially, the first five-

year timeframe was used to approach steady-state operation for manure management systems. The 

lifecycle inventory data used in the SimaPro model was taken as the average of the simulation results over 

the second five-year simulation period. The weather files from 1980 onward were created using data from 

NASA’s MERRA data set (Rienecker et al., 2011). In the event that the MERRA data were incomplete, 

the weather files were supplemented by NOAA’s Climate Data Online (NCDC, 2015). Satellite weather 

data does not exist prior to 1980; therefore, historical NOAA data, from weather stations located in the 

simulation county, for daily high and low temperatures were interpolated into hourly temperatures based 

on typical diurnal cycles. A custom computer program was written to extract the data from the MERRA 

files and translate into the appropriate input format for the calculator. 

Figure 2. Ribbon chart showing the change in state ranking and state total inventory (million animals) 
across the simulation period. Select states are identified at right. 
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2.2.1.3 Performance characteristics 

Grow-finish barns in each simulation year modeled incoming piglets as weighing approximately 

13 lbs. and in 1960 were finished at 200 lbs. Finishing weights increased steadily over the assessment 

period and in 2015 reached 282 lbs. As finishing weights increased, feed conversion ratio (FCR) was 

improving. In 1960, the average FCR was estimated to be 4.3 lbs. of feed per pound of LW produced. By 

2015, the FCR had improved to 2.6. Mortality rates in the grow-finish barn were much less consistent 

over time, with the national average rate rising and falling throughout the assessment period. The piglets 

produced per sow and the number of piglets that survived to weaning increased over the assessment 

period. In 1960, sows were simulated as having ten piglets per litter with seven surviving to weaning. By 

2015, those numbers increased to 13.5 and 10, respectively. Data were scarce with regard to the 

replacement rate of sows throughout the assessment period, so it was assumed that it remained relatively 

constant over the assessment period at 50 percent annually (Safranski, 2005). The same issue exists 

regarding the information available on the sow mortality rates. When robust data were available, we used 

Table 1. A list of the 24 states considered for this assessment and the subsequent number of counties 
within each state that were simulated. 

States Counties 
per state County names 

Alabama.……... 6 Covington, DeKalb, Henry, Houston, Pickens 
Arkansas.……... 4 Benton, Pope, Sevier, Washington 
Colorado.……... 4 Adams, Morgan, Weld, Yuma 
Georgia.………. 5 Bulloch, Coffee, Colquitt, Mitchell, Oglethorpe 
Illinois.………... 5 DeKalb, Edgar, Greene, Henry, Pike 
Indiana………... 1 Carroll 
Iowa…………... 5 Delaware, Hardin, Plymouth, Sioux, Washington 
Kansas………... 3 Nemaha, Scott, Washington 
Kentucky……... 4 Allen, Hopkins, Nelson, Union 
Michigan…….... 2 Allegan, Cass 
Minnesota…….. 5 Fillmore, Freeborn, Martin, Nobles, Stearns 
Mississippi……. 3 Hinds, Noxubee, Yazoo 
Missouri………. 7 Lafayette, Miller, Nodaway, Pike, Saline, Sullivan, Vernon 
Nebraska……… 4 Cedar, Cuming, Holt, Platte 
North Carolina... 2 Duplin, Sampson 
Ohio…………... 3 Clinton, Darke, Mercer 
Oklahoma……... 3 Canadian, Delaware, Texas 
Pennsylvania…... 1 Lancaster 
South Carolina… 3 Dillon, Horry, Orangeburg 
South Dakota….. 3 Hutchinson, Lincoln, Minnehaha 
Tennessee……... 3 Gibson, Henry, Weakley 
Texas…………... 4 Archer, Fayette, Llano, Lubbock 
Virginia………... 3 Rockingham, Southampton, Virginia Beach City 
Wisconsin……... 1 Grant 

 



Page | 11 
 
 

it to inform the PPEFC simulations (USDA, 2008). Otherwise, we used a default value of 3 percent. Key 

performance characteristics implemented in the grow-finish and sow barns are presented in Table 2. A 

full list of PPEFC input parameters are available in Appendix Table 1 for grow-finish barns, Appendix 

Table 2 for sow barns, and Appendix Table 3 for the overall farm. 

2.2.1.4 Production facilities 

Approaching the 1960s, permanent housing was most commonly used in breeding operations; 

however, these were minimal structures typically consisting of wooden walls and dirt floors. For large 

herds of grow-finish pigs, the most common approach was to use movable houses to protect against 

infection. These facilities were intentionally minimal so that they could be relocated around the pasture in 

order to prevent the concentration of manure (Bond and Peterson, 1958). The PPEFC is not capable of 

modeling such extensive farming practices, so to construct representative simulations for the 1960, 1965, 

and 1970 reference years, we created grow-finish and sow barns using the “hoop barn” designation. We 

set hoop barn parameters to exclude fans, piglet cooling equipment, and set the R value of the walls and 

ceiling to 0 (i.e., without any insulation). The only energy uses on farm for 1960, 1965, and 1970 were 

associated with lighting and piglet heaters in the sow barn, which were commonly used by producers in 

Figure 3. Locations of counties included in simulations, showing geographic coverage. 
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the United States during at least some part of the year. By 1975, hog farming was becoming more 

modernized, and the average size of an operation increased as more permanent facilities were constructed. 

Perhaps because of these changes, there is more thorough documentation of the United States pork 

industry beginning around this time. This improved documentation included detailed USDA reports 

covering the hog industry during the 1970s and 80s, enabling regionalized input parameters for the 

PPEFC during this time (Shapouri et al., 1988; Van Arsdall, 1978; White, 1983). The growth in pig 

industry during the 1970s occurred primarily in the Southeast, as hog farming spread outside of the Corn 

Belt. These newer operations were markedly different than their Midwest counterparts, making use of 

solid walled construction, and mechanized cooling, which were reflected in the southern county 

simulations beginning in 1975. Modernization of production facilities in the Midwest was not as 

widespread until the 1980s, and as such, this was not reflected in those simulations until 1985. By the 

early 1990s, most of the pigs produced in the United States were done so on modernized farms. As such, 

from 1990 onward, grow-finish and sow barns in all counties were modeled as fully enclosed barns with 

tunnel ventilation. A timeline summarizing the incorporation of certain PPEFC parameters regarding 

production facilities is presented in Table 3. 

2.2.1.5 Manure management 

Manure management systems were attributed to farms throughout the assessment period in a 

regionally explicit manner when the data supported such disaggregation from the national level data. 

Throughout the assessment period, data were not always available to differentiate between manure 

Table 2. National average performance characteristics simulated in grow-finish and sow barns for 
each reference year.  

         

Year 
Grow 

mortality 
(% pigs) 

FCR ADG 
(lbs./day) 

Market 
weight 

(kg) 

Days on 
feed 

Piglets 
per 

litter 

Weaned 
piglets 

per litter 

Sow barn 
mortality 

(% annual) 
1960 1.8% 4.5 1.6 90.7 124.5 10.0 7.0 3.0% 
1965 1.7% 4.6 1.6 95.3 134.2 10.1 7.2 3.0% 
1970 1.7% 4.7 1.3 99.8 163.4 9.8 7.3 3.0% 
1975 1.4% 4.7 1.4 105.2 162.9 9.2 7.3 3.0% 
1980 1.4% 3.9 1.5 103.0 148.3 10.4 7.5 6.0% 
1985 1.7% 4.1 1.5 103.0 155.3 9.2 7.3 6.0% 
1990 2.0% 4.4 1.4 112.9 178.3 10.3 8.4 6.0% 
1995 2.1% 3.5 1.8 116.1 142.5 10.0 8.5 9.0%** 
2000 2.7% 3.2 1.8 118.8 146.2 10.8 8.8 12.0%** 
2005 1.7% 3.0 1.7 122.0 162.4 11.8 9.4 1.0%** 
2010 4.3% 2.8 1.6 121.9 168.3 13.0 10.0 3.0% 
2015 1.7% 2.8 1.6 127.6 172.9 13.5 10.0 3.0% 

** the fluctuations in sow mortality are primarily the result of changes in the reporting categories. The 
simulations in each year assumed a 50% replacement rate for sows (death + marketed). This variability falls 
below the 1% threshold requiring higher resolution data  (USDA, 2008). 
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management systems of piglet producers (sow barns) and grow-finisher operations (grow-finish barns). 

To retain a consistent approach throughout the assessment period, data were compiled for market pig 

producers and applied to both sow and grow-finish barns in a region. While we know from the data that 

this is not always the case, the lack of data availability throughout the period in conjunction with the 

lower contribution of sow barns to the footprint of LW swine, we are confident that this assumption will 

not alter the conclusions drawn from these results. The distribution of manure management systems in 

each region over time is shown in Figure 4. The best available data showed a significant, and somewhat 

anomalous, fraction of liquid slurry management in 1995; we do not have other information regarding this 

system but simulated it as an outdoor lagoon. 

As mentioned in the previous section, manure management systems in the 1960s were 

predominantly open lot and dry bedding systems. The PPEFC does not simulate pasture-raised pigs, and 

therefore the first three reference years were treated as dry bedding systems in the PPEFC. Only by the 

mid-1970s with the shift towards industrial hog farming does the use of intensive manure management 

systems start to receive mention in the literature. The dominant system in the 1975 and 1980 simulations 

remained dry bedding, but other systems were starting to place the pasture-based operations, and by 1985 

the use of dry bedding dropped below 50 percent of all United States operations. In the North Central 

United States, dry bedding systems were replaced by slatted flooring, which typically diverted manure to 

Table 3. A summary of the simulation years in which changes were made to housing parameters in 
grow-finish and sow barns. 

Year Grow-finish barns Sow barns 

1960 PPEFC uses "hoop barn" designation. No 
fans, heating, or cooling, but some lighting 

PPEFC uses "hoop barn" designation. No 
fans or cooling, some lighting and heat lamps 
for piglets. 

1975 

PPEFC uses "drop curtain" designation for 
Southeast states. Includes fans, full barn 
heating with propane, and sprinkler cooling. 
No change in North Central states. 

Southeastern states modeled as "tunnel 
ventilated", all others "drop curtain". Both 
include fans and full barn heating with 
propane. 

1985 
All counties in PPEFC get "tunnel ventilated" 
designation, which includes fans, sprinklers, 
and full barn heating with propane. 

No change to sow barns 

1990 No change to grow-finish barns 
All counties in PPEFC get "tunnel ventilated" 
designation, which includes fans and full 
barn heating with propane. 

After 1990 All counties in PPEFC remain "tunnel 
ventilated" designation 

All counties in PPEFC remain "tunnel 
ventilated" designation 
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a subfloor or a deep-pit. In the Southeastern United States, disposal of swine manure into lagoons became 

more and more common, reaching its highest level of adoption in the 2000 simulation with 78 percent of 

farms in the SE using anaerobic lagoons for managing manure. New regulations increased restrictions on 

manure management practices which slowed expansion of the industry. As a result, new farms (and newer 

manure management systems) were not built during this time, and the Southeast simulations continue to 

utilize lagoons at +90 percent throughout the remainder or 1990s. Not until the early 2000s do the data 

suggest a decline in the use of lagoons. The 2005 Southeast simulation represents the first decrease in 

manure managed in lagoons for the region since the shift from pasture raised pigs in 1975. The use of 

lagoons to manage manure increased over the same period in other areas of the United States as well, but 

not to the same extent as in the Southeast. North Central producers have been much more likely to rely on 

deep-pit systems, and that has continued up to current day with the 2015 North Central simulation 

attributing deep-pit management to 75 percent of producers.  

Figure 4. Distribution of hogs among manure management systems. State level data regarding number 
and type of manure management was used in simulations. Here is inventory-weighted distribution of 
manure management at national level. 
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2.2.1.6 Feed rations 

Feed rations for the PPEFC were based on the nutritional values published by the National 

Research Council (NRC) in the Nutrient Requirements of Swine publications (National Research Council, 

2012, 1998, 1988, 1979, 1973). The initial ration formulation and list of ingredients was adopted from the 

1973 publication as it was earliest edition available. That initial formulation was used in the simulations 

for 1960 – 1975, and from then on, the edition published closest to the reference year was used.  Feed 

rations were formulated using these nutrient requirements and an initial set of ingredients, which 

consisted of corn, soybean meal, minerals, and vitamins (Table 4). For sow barn rations, we formulated 

two distinct rations: one for gestating sows and one for lactating sows. For grow-finish barn rations, we 

formulated multiphase rations that followed the number of phases given in the NRC publication of 

reference to reach the market weight of each simulation year.  

The spreadsheet-based ration optimization tool WUFFDA 2.1 was used to determine the ration 

formulations each of the grow-finish and sow barn diets in a given simulation year (Alhotan and Pesti, 

2016). Nutrient requirements for each phase were entered into the WUFFDA calculator along with the list 

Table 4. A list of the changes made to the base ration over the assessment period and the simulation 
year in which those changes were implemented. 

Simulation year Description 

1960 
Base ration formulated using guidelines from NRC (NRC 1973). Includes 
corn, soybean meal, dicalcium phosphate, limestone, salt, vitamin/mineral 
mix 

1970 Addition of poultry fat and two crystalline amino acids (Lysine and 
Methionine) 

1980 Rations reformulated using updated nutrient recommendations (NRC 1979) 

1985 Addition of two more crystalline amino acids (Tryptophan and Threonine) 

1990 Rations reformulated using updated nutrient recommendations (NRC 1988) 

1995 Soybean meal changed to dehulled, moving from 44 percent to 48 percent 
crude protein 

2000 Addition of Ractopamine into grow-finish barn rations, updated nutrient 
requirements (NRC 1998) 

2005 Addition of DDGS 

2010 Addition of crystalline amino acid Valine and updated nutrient requirements 
(NRC 2012) 
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of available ingredients. Each available ingredient was assigned a set of parameters which described its 

nutrient contents, its minimum and maximum inclusion rates for each phase, and its price. We used the 

nutrient profiles of each ingredient from the same NRC publication which informed the swine nutrient 

requirements for that simulation year. The price data was primarily informed by data from the USDA 

(USDA ERS, 2018a; USDA NASS, 2018). If data were not available for the entire time period of this 

assessment, prices were linearly interpolated to fill in the price data for missing years. For ingredient 

prices that were not tracked by government databases or did not otherwise have consistently available 

historic pricing data we used recent pricing data and interpolated back in time according to established 

pricing trends of ingredients that served similar purposes in the ration. For example, historic price data on 

synthetic amino acids was unavailable, so the current price was interpolated back in time according to the 

trend in price for soybean meal because they often offset a source of crude protein in the diet. 

While swine diets have become more homogenous over time, corn and soybean-based diets have 

been commonly used since 1960 (Becker, 1959; Carlisle and Russell, 1970; Van Arsdall, 1978).  As such, 

those two commodities were selected as the primary ration constituents for the entire assessment 

timeframe; however, the list of included ingredients was expanded over time. Using information available 

in the literature and consultation with industry experts, the list of ingredients for rations was expanded 

according to what was considered common practice at the time. Table 4 gives the ration ingredients and 

the year in which their inclusion in the rations began. Except for the inclusion of dried distillers’ grains 

(DDGS) into diets, we did not formulate rations with different ingredients within the same reference year 

and for the same barn type. All grow-finish barns in any given year, regardless of location, were fed the 

same ration. While we recognize that this is not likely the case, we were unable to find information to 

provide guidance into regional ration formulations, particularly as the simulation year approaches 1960. 

However, DDGS presented a special situation. 

DDGS, a co-product of ethanol production, are used in animal diets to substitute corn and 

soybean meal. The production of ethanol and consequently that of DDGS saw a rapid increase after year 

2001; therefore, DDGS were included in the diets of pigs starting in year 2005 of our simulations 

(Wisner, 2010). Hoffman and Baker (2011) recommend including DDGS in swine diets at the inclusion 

rate of 10 to 50 percent of dry matter for breeding swine and 10 to 30 percent of dry matter for market 

pigs. The recommended DDGS substitution rate for corn and soybean meal is 0.7 to 0.89 and 0.1 to 0.3 

pounds per pound of DDGS respectively. Stein and Shurson (2009) reported that up to 30 percent DDGS 

can be included in nursery and grower-finisher pig diets without affecting pig performance. However, 

high linoleic acid in DDGS can make pork fat softer and therefore Stein and Shurson recommended 

limiting DDGS inclusion rate in finisher diets to 20 percent and weaning pigs off DDGS in last three 
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weeks. For breeding pigs up to 30 and 50 percent DDGS can be included in lactation and gestation diets 

respectively (Stein and Shurson, 2009). The authors also recommended fortifying diets with amino acids 

when DDGS are included. 

According to Renewable Fuel Association (RFA), biorefinery sector in the United States 

produced 7.9 million metric tons of distiller’s grains for animal feed in 2005 and by 2015 that number 

increased to 35.5 million metric tons (RFA, 2018a). The RFA estimated that 16 percent of DDGS2 in the 

United States were consumed by swine industry; however, estimates on actual DDGS consumption by 

pigs in the United States were inconsistent3 (Gottschalk, 2007; RFA, 2018a). Following the inclusion 

guidelines published by Hoffman and Baker (2011) and Stein and Shurson (2009) and applying the 

WUFFDA formulated diets to ALL pigs produced in final three simulation years resulted in the total 

national consumption of DDGS to be significantly larger than estimated consumption in 2005, but still 

below the 16 percent consumption rate reported by RFA, but approximately equivalent to the 9 percent 

consumption rate reported in a 2007 study3. This is an important consideration as the inclusion of DDGs 

in the ration is associated with an increase in energy use and GWP, and the total quantity consumed 

therefore has an important effect on the national, sector level estimates. Therefore, for the sake of 

representativeness and consistency, diets formulated by an animal nutritionist at the University of 

Arkansas were used for the final three simulation years and two feed ration scenarios were considered.  

Two scenarios for years 2005, 2010, and 2015 were created using the diets formulated to include 

and exclude DDGS. In the first scenario (All DDGS) it was assumed that DDGS were fed to 100 percent 

of pigs in all the counties used in the study; these results are not included in this report, as they are not 

considered representative of the industry. However, an online, interactive report will be made available in 

which this scenario is included. In the second scenario (Limited DDGS), pigs in some counties were 

assigned diets with DDGS while those in other counties were assigned diets without DDGS. Use of 

DDGS in 2005 was limited to Southern Minnesota and North and Central Iowa and to have expanded to 

other pork production regions in 2010 based on ethanol biorefinery locations at the time – see Figure 5 

(RFA, 2018b). Diets formulated to include DDGS were assigned to a simulated farm if an ethanol 

biorefinery was located in that county or a neighboring one.  

                                                      
 

2 http://www.ethanolrfa.org/resources/industry/co-products/#1456865649440-ae77f947-734a 
3  https://beef.unl.edu/beefreports/symp-2007-01-xx.shtml 
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2.2.2 Feeds 

We have included the best approximation of typical swine feeds over what is available in the 

literature and consistent with available lifecycle inventory. In the 1960s some wheat, oats and alfalfa was 

fed to pigs as an energy feed which eventually shifted to a primarily corn/soy and more recently 

corn/soy/DDGS ration. Due to the lack of data regarding production of the alternate ingredients in the 

earlier years, we formulated corn/soy rations for the entire period, with inclusion of DDGs beginning in 

2005. The following sections outline the sources and data used for estimating the impact of ration 

ingredients.  

2.2.2.1 Crops 

Life cycle inventory (LCI) data for crop production were collected from each of the top five corn 

and soybean producing states in the United States Illinois, Indiana, Iowa, Minnesota, and Nebraska were 

the top five throughout the assessment period, and combined they produced 59 to 68 percent and 47 to 61 

percent of all U.S. corn and soybeans, respectively (Figure 6). USDA survey data from these states were 

used to determine LCI data for yield and production volume (USDA NASS, 2018). Fertilizer application 

Figure 5. Distribution of hog production with proximity to ethanol production facilities. The size of the 
circle represents the relative number of hogs sent to market in a county, and the color represents the 
quantity of distillers' grains produced in the same vicinity. Darker shades represent higher production 
of distillers’ grain.  For the limited DDG scenario, counties in regions distant from a source of DDG 
were fed a corn/soy ration formulated without DDG. 
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rates were determined using data from NASS Agricultural Chemical Usage for years 1960 to 2010 

(USDA ERS, 2018b). Pesticide use for the same time period was determined using a dataset published by 

the USDA (Fernandez-Cornejo and Vialou, 2014). Emissions associated with nitrogen fertilizer 

applications and crop residues were calculated using IPCC methods (Intergovernmental Panel on Climate 

Change, 2006). Fuel use associated with planting, irrigating, and harvesting was estimated using crop 

budgets published by extension services in each of the five states. Since a comprehensive set of historic 

crop budgets was not available, fuel use was adjusted for each simulation year according data from tractor 

efficiency tests published by the Nebraska Tractor Test Lab (Hoy et al., 2014). The methods and sources 

used to determine tractor efficiencies for this assessment are described in detail in Section 2.2.3.2.  Data 

from all five states were used to inform production-weighted LCI models for corn and soybean 

cultivation, representing national production during each simulation year. A summary of LCI values used 

in the corn and soybean models are presented in Table 5 and Table 6.  

 

Figure 6. Corn and soybean production over the assessment period from the five states from which data 
were used to inform the corn and soybean LCI processes along with production from the rest of the 
United States. 
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2.2.2.2 Irrigation water 

Irrigation water use was calculated for each year using multiple sources because no single source 

exists that links production of an individual crop within a state to the total quantity of irrigation water 

applied. Further complicating matters, the USDA census reports supply the best available data on 

irrigated acreage in the United States; however, these reports were not published on a consistent time 

Table 5. A summary of LCI values used in the corn unit process for each simulation year. 

 Yield 
Irrigation 

water Pesticides 
Nitrogen 
fertilizer 

Phosphorous 
fertilizer 

Potassium 
fertilizer Diesel 

N2O 
emissions 

Year (kg) (m3) (kg) (kg N) (kg P) (kg K2O) (l) (kg) 
1960 3,921 152.06 0.38 55 35 28 76 1.75 
1965 5,330 190.09 1.01 77 48 42 74 2.38 
1970 5,015 246.95 1.70 124 75 73 75 3.32 
1975 6,080 314.61 2.47 115 57 64 78 3.28 
1980 6,188 361.56 3.60 143 66 81 81 3.86 
1985 7,969 327.42 3.63 163 59 75 77 4.52 
1990 7,954 281.24 3.91 153 59 72 74 4.30 
1995 7,317 264.87 3.30 145 53 65 72 4.07 
2000 8,998 209.66 2.53 154 58 70 66 4.47 
2005 10,067 438.72 2.37 153 57 77 83 4.58 
2010 10,310 302.76 1.32 161 58 64 82 4.77 
2015 11,411 389.15 1.70 167 79 94 79 5.06 

 

Table 6. A summary of LCI values for the soybean unit process for each simulation year. 

 Yield 
Irrigation 

water Pesticides 
Nitrogen 
fertilizer 

Phosphorous 
fertilizer 

Potassium 
fertilizer Diesel 

N2O 
emissions 

Year (kg) (m3) (kg) (kg N) (kg P) (kg K2O) (l) (kg) 
1960 1,699 5.06 0.12 0.6 3.7 4.3 41 0.52 
1965 1,793 6.24 0.37 1.3 5.0 7.1 39 0.55 
1970 2,053 8.00 0.93 2.6 8.5 14.4 39 0.62 
1975 2,254 11.45 1.52 2.1 7.2 11.6 40 0.64 
1980 2,355 23.34 2.21 2.2 11.1 17.2 39 0.66 
1985 2,630 33.99 1.49 2.3 9.4 20.6 37 0.70 
1990 2,671 31.24 1.57 3.9 10.5 22.6 36 0.74 
1995 2,719 34.57 1.24 4.1 11.4 22.4 36 0.75 
2000 2,891 56.82 1.22 4.0 8.9 22.6 36 0.78 
2005 3,296 198.67 1.42 3.8 13.1 26.6 46 0.84 
2010 3,356 132.81 1.97 3.2 13.9 26.2 45 0.83 
2015 3,667 179.44 1.52 4.7 18.6 34.3 44 0.91 
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period. As such, irrigation water use in corn and soybean production was calculated using a combination 

of USDA census reports and USGS water reports. The USGS water reports were published every five 

years and were representative of the same years as our simulation years, so they were used inform the 

quantity of water applied to crops (Hutson et al., 2004; Kenny et al., 2009; MacKichan and Kammerer, 

1960; Maupin et al., 2014; Murray, 1968; Murray and Reeves, 1977, 1975, Solley et al., 1985, 1998, 

1993, 1988). For years 1960 to 1975, the USDA census reports were published for the year prior to each 

simulation year, so they were used in combination with the USGS reports to link the quantity of water to 

the cropland on which it was applied (Hurley and Mcpike, 1959; USDA, 1978, 1973, 1967). For years 

1980 to 2010, the census publications shift years, making them even less representative of the simulation 

years chosen for this assessment. In order to align irrigation water in our crop models with these 

simulation years, we averaged the data from the two census reports nearest to the simulation year (USDA, 

2009, 2004, 1999, 1996, 1989, 1984, 1981). For example, the 1985 crop models utilized data from the 

USDA census reports from 1982 and 1987 in combination with water use data from the USGS report 

from 1985. It should be noted that as a result, most of the census reports were utilized in two crop models, 

e.g. the 1987 report informed both the 1985 and 1990 crop models. At the time of this assessment, the 

most current USDA census report was 2012; therefore, irrigation water in the 2015 crop models was 

informed solely by the Farm and Ranch Irrigation Survey from 2013 (USDA, 2014).  

2.2.2.3 Crop by-products 

The production of DDGS was represented by adapting an existing USEI unit process for an 

ethanol distillery with the temporal corn model described in the previous section. Allocation of corn 

production impacts between DDGS and ethanol was performed at the ethanol distillery. Further 

processing, such as natural gas used in the drying of DDGS was attributed exclusively to the DDGs. 

Two unit processes for soybean meal were created using the temporal soybean crop model as an 

input to an existing unit process from the USEI database. One of these unit processes was constructed 

such that soybean meal and oil were the only two coproducts, and this process was used for soybean meal 

in simulations for 1960 through 1990. Around the mid-1990s, it became more common for soybean 

processors to separate out the hulls from the meal, which increased the crude protein content from 44 

percent to 48 percent (Cromwell, 2017). As such, simulations starting in 1995 utilized soybean meal from 

a different unit process in which hulls were included as a third product. As a result, slightly less de-hulled 

soybean meal was produced for the same input of soybeans, which also altered the allocation fractions 

(CME Group, 2012). Aside from this change in 1995, it was assumed that the material and energy 

requirements for processing soybeans have not changed substantially since 1960 and that these adapted 

USEI processes provided accurate representations of soybean processing throughout the assessment. 
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2.2.2.4 Poultry by-products 

The NRC recommendations for swine nutrition have become more prescriptive over time, and as 

a result, our feed ration formulations required additional ingredients to meet these requirements. 

Developments in the understanding of piglet nutrition led to nutrient profiles that could not be met by 

corn- and soy-based feeds alone. In order to meet the evolving nutrient requirements of nursery rations 

throughout the assessment period, results from a poultry retrospective covering a similar timeframe were 

adapted for use in this assessment (Putman et al., 2017). Poultry by-products were modeled by 

interpolation of production in the 1960s and the 2010s to the simulation year.  

2.2.2.5 Other feeds 

Non-agricultural feeds like vitamins and minerals were represented by unit processes from the 

U.S. Ecoinvent v2.2 (USEI) database (Frischknecht et al., 2005). We assumed impacts associated with the 

production of these items remained constant over the assessment period. While this is likely to 

underestimate their contribution to potential impacts, particularly in the earlier simulation years, it is 

unlikely to undermine the robustness of conclusions drawn from the results of this assessment as these 

items are consumed in such small quantities and do not contribute significantly to environmental impacts 

associated with pork production. 

2.2.3 Background systems 
In addition to the non-agricultural feeds, the USEI database was used to estimate the upstream 

impacts associated with background systems, i.e. energy, transportation, and raw material production. 

Many of the standard unit processes within the database were adapted to reflect the changes in efficiency 

over time. Using historical data, regression equations were developed and applied to unit processes such 

that the efficiency could be adjusted to represent the simulation year. Table 7 provides an overview of the 

processes that were adapted. Production efficiencies of all other processes not listed in Table 7 were 

Table 7. The types of processes that were adapted to reflect changes in efficiency over the assessment 
period are presented alongside the total change in process efficiency from 1960 to 2015 and the data 
source used to calculate scaling factors. 

Process Efficiency change Source 
Tractor fuel use 31% Nebraska Tractor Test Lab 
General use motors 25% Nebraska Tractor Test Lab 
Nitrogen fertilizer production 33% International Fertilizer Industry Association 
Road transport 18% US Department of Energy 
Rail transport 209% US Department of Energy 
Water transport 69% US Department of Energy 
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assumed to be constant over the assessment period; however, the composition of power generation 

sources for the electricity grid mix was altered to represent the historical mix of a given simulation year. 

The methods and sources used to determine the changing efficiencies of these background systems are 

described in the following sections. 

2.2.3.1 Fertilizer production 

A report by the International Fertilizer Industry Association provided the energy efficiency of 

ammonia production plants from 1955 to 2008 (IFA, 2009). The data in this report was used to derive a 

regression equation relating production efficiency to simulation year. This equation produced scaling 

factors for each simulation year, which were applied to the energy requirements within the USEI unit 

processes for nitrogen fertilizer production.  

In addition to the changing production efficiency, the types of nitrogen fertilizers used in United 

States agriculture also changed. In order to account for the various types of nitrogen fertilizers used 

throughout the assessment period, a national average mix was compiled for each simulation year using 

data from the USDA ERS (USDA ERS, 2018b). Each type of fertilizer was represented in the model 

using processes from USEI, each adjusted for production efficiency with respect to the simulation year.  

2.2.3.2 Tractor efficiency 

According to data from the Nebraska Tractor Test Laboratory, fuel consumption in the tractors 

sold in the early 1960s was 31 percent higher for drawbar power and 25 percent higher for power take-off 

than of those sold in the early 2010s. Based on the data from this assessment, regression equations were 

developed linking fuel consumption for crop-related operations to the simulation year. Drawbar power 

was used to develop the equation for fuel use efficiency in field operations and power take-off served as a 

proxy for general use motors. Using this set of equations, we were then able to estimate fuel consumption 

in crop production that reflected the efficiency of equipment with respect to the simulation year. 

2.2.3.3 Transport modes 

The Transportation Energy Data Book published statistical data for the energy intensities of 

freight modes going back to 1970 (Davis et al., n.d.). Linear regressions were developed using this data to 

extrapolate back to 1960, and forward to 2015. These regressions were used to create scaling factors for 

transportation via road, rail, and water. These scaling factors were used to adjust the fuel use per ton-km 

of each transport unit process throughout the supply chain. 
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2.2.3.4 Electricity mix 

All unit processes within the USEI database that utilize electricity from the United States power 

grid are linked to a single upstream process that represents an average mix of power generation sources 

for the nation. By altering this mix, we were able to create a representative electricity mix for each 

simulation year based on historical data published by the United States Energy Information 

Administration (US EIA, 2014). While the mix of sources of power generation in each simulation year 

changed, the efficiency of each was not altered. While this will likely underestimate the impacts from 

electricity, particularly in earlier years, it is unlikely to alter the conclusions drawn from the results of this 

assessment. Additionally, despite efficiency changes not being reflected, the representative mixes will 

likely provide insight to the changing impacts through time that a static mix would not. The makeup of 

power generation sources in the electricity grid used in each simulation year is shown in Table 8. 

2.2.4 Aggregation 
In order to calculate the national impacts from county-level results, a methodology for 

aggregation was established. For a given simulation year, impacts per kg LW were calculated for each 

state by calculating the production-weighted average of all the counties simulated in that state. These 

state-level impact averages for the 24 states with simulated counties were then multiplied by the LW 

production of each state for the simulation year using data from the USDA to get the total impact from 

each state (USDA NASS, 2018). Results from the 24 simulated states were used to create production-

weighted average impacts to serve as national average impact per kg LW marketed. The production-

weighted average national impact values were used in determining the impacts associated with pig 

production in the remaining 26 states. The equations used for aggregation are given in the appendix. 

Table 8. The percent contribution of electric power generation by source as implemented into the LCA 
model for each simulation year. 

Year Coal Petroleum Natural gas Nuclear Hydroelectric Wind Other renewables 
1960 53.3% 6.4% 20.9% 0.1% 19.3% 0.0% 0.0% 
1965 54.1% 6.1% 21.0% 0.3% 18.4% 0.0% 0.0% 
1970 46.0% 12.0% 24.3% 1.4% 16.2% 0.0% 0.1% 
1975 44.5% 15.1% 15.6% 9.0% 15.6% 0.0% 0.2% 
1980 50.8% 10.8% 15.1% 11.0% 12.1% 0.0% 0.2% 
1985 56.8% 4.1% 11.8% 15.5% 11.4% 0.0% 0.4% 
1990 54.2% 4.1% 10.7% 19.9% 9.9% 0.1% 1.2% 
1995 52.8% 2.1% 13.2% 21.1% 9.5% 0.1% 1.2% 
2000 53.4% 2.9% 14.3% 20.7% 7.3% 0.2% 1.2% 
2005 51.1% 3.0% 17.7% 20.1% 6.7% 0.5% 1.0% 
2010 46.1% 0.9% 22.8% 20.3% 6.4% 2.4% 1.1% 
2015 34.3% 0.7% 31.7% 20.4% 6.2% 4.9% 1.9% 
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2.2.5 Allocation 

Whenever possible, allocation was avoided by system expansion. This was required in two 

situations in the assessment. The first was regarding the culled sows leaving the sow barn. Since these 

animals enter the human food supply, they were incorporated into the functional unit in proportion to their 

direct contribution to finishing one market weight pig from the grow-finish barn. The ratio of culled sows 

to market weight pigs was established using the ratio in the following equation, which is inclusive of the 

entire life of a sow, weaned piglets, and finished pigs, accounting for mortalities.  

𝑘𝑘𝑘𝑘 𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆
𝑘𝑘𝑘𝑘 𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒

= 𝑠𝑠𝑠𝑠𝑠𝑠  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 (𝑘𝑘𝑘𝑘) �
# 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦

#𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑦𝑦𝑦𝑦
� [1 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] 

In addition to including culled sows, we also expanded the system boundaries to include the 

emissions from field application of manure after the on-farm treatment or storage stage. This accounting 

ensures a consistent system boundary across the entire temporal series. When agricultural byproducts 

were included as feeds, such as soybean meal, allocation was unavoidable. For soybean meal, we 

allocated according to the mass-adjusted energy content of the coproducts, which allowed the allocation 

fractions to remain constant across simulation years. Allocation of corn production impacts between 

DDGS and ethanol was performed according to the economic value of the two coproducts. 

2.2.6 Life cycle impact assessment (LCIA) 
Life cycle impacts were calculated using the SimaPro software platform. The GWP was 

determined using IPCC 100a 2013 characterization factors (Myhre et al., 2013). Energy use was 

determined using the method Cumulative Energy Demand v1.09 (Frischknecht et al., 2007). Water use 

was determined as strictly an inventory of water consumed, which does not include water uses like that of 

hydroelectric power plants. Land use was also calculated as strictly an inventory item, thus does not 

include potential effects on ecosystem services. 

3 Results and discussion 
The LCIA results for the simulated states are presented in Figure 7 with a basis of one kg LW pig 

at the farm gate in five-year intervals, starting in 1960 and ending in 2015. On average, impacts declined 

across all four categories over the assessment period. The largest decrease was seen in land use (75.9 

percent), followed by water use (25.1 percent), then GWP (7.7 percent), and finally energy use (7.0 

percent). Broadly speaking, this is an analysis of an extremely complex and inter-connected system which 

makes it challenging to quantify the specific contribution of individual factors that have influenced these 
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Figure 7. LCIA results for all the simulated counties. Boxes represent 50 percent of simulated counties, 
with the center line representing the median and the X representing the mean. Whiskers are the expected 
minimum and maximum values.  Circles represent outliers, defined as being more than 1.5 times the 
interquartile range (size of the box) above or below the box 
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improvements. In addition to improvements in on-farm management, there are economy-wide changes in 

energy efficiency and manufacturing which also contributed to the improvements. In the following 

section, we attempt to identify major shifts and the effect these shifts have had on the performance 

metrics. 

The GWP results have a higher variance during the period from 1960 to 1970 due to the extensive 

nature of pig production during those years. Manure emissions from pigs raised in warmer, southern 

states were higher than those in the northern states because methane volatilization increases with higher 

temperatures. This variability decreases in the 1970s and 1980s as production facilities become more 

advanced and manure storage moves indoors. This transition has the opposite effect on energy use, which 

had been relatively constant across states, but energy use begins to increase as fully enclosed production 

gained prevalence in southern states. The more modernized facilities initially led to larger energy use per 

kg LW with increased electricity and propane use for climate control, but over time these advances 

contribute to improved pig performance and subsequently lead to reductions in impacts associated with 

production. As production in other regions follows suit, the variability declines as facilities throughout the 

United States are increasingly homogeneous.  

Starting around 1980, a significant fraction of production moved indoors, and facilities became 

more advanced, allowing for greater control over the production environment. With improvements in 

facilities came improved health and nutrition; as a result, impacts per kg LW declined across the United 

States from 1980 until 2005 in all impact categories. This trend reversed in 2005, which saw the 

introduction of distillers’ grains into swine diets. The drying energy required to produce DDGS is 

associated with higher GHG emissions and energy use than the feeds replaced, causing an increase in the 

GWP and energy use associated with pigs having DDGS in their diets. Not all pig production takes place 

near ethanol facilities, which produce the distillers’ grains as a byproduct, and therefore the variability in 

GWP and energy use increases in the 2000s as some rations include DDGS and others do not. The 

increase in water use in 2005 is not directly related to the introduction of DDGS. Instead, the corn and 

soybean models in 2005 rely on data from a significant drought year, which resulted in higher irrigation 

rates than normal. This explains the decline in the following years, which experience more normal 

weather patterns.  

Land use associated with pig production was approximately 99 percent from crop production and 

this was consistent for production across the United States and throughout the assessment period. The 

stable decline in land use is representative of the improvement in domestic corn and soybean yields. The 

lack of variability within years is due to the corn and soybean models, which were not regionally explicit; 
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therefore, all animals in a given year were fed the same, national commodity average corn and soybean 

feeds regardless of their location.  

3.1 Global warming potential 
The influence of feed rations on the GWP per kg LW is significant, with the contribution of 

grow-finish barn feed to the GWP per kg LW pig ranging from 59 percent in 1970 to as low as 44 percent 

in 1995 (Figure 8). The peak impact of feed in 1970 is driven by corn production, which experienced a 

drought year that drove yields down while nitrogen fertilizer application rates remained largely the same. 

This led to relatively higher global warming impact from nitrogen fertilizer production and application 

emissions relative to other years. The high GWP of corn in 1970 is compounded by the FCR, which in 

1970 is the highest (meaning worst performance) of any simulation year. In this case, 1970 was a drought 

year; however, it should be noted that this effect can also occur when a drought year falls within the 

timespan of the underlying data used to create the crop models. Following 1970, improving FCR and crop 

yields decreased the contribution of feed rations to the overall GWP to its low point in 1995. In 2005, 

grow-finish barn feed moves back above 50 percent of the total GWP per kg LW as DDGS are introduced 

into rations. 

Emissions from manure in the grow-finish barn increase over the assessment period. Their 

relative contribution to GWP is as low as 10.9 percent (1980) and reaches 22.6 percent by 2015, as shown 

in Figure 9. While these emissions are influenced by numerous factors, i.e. nitrogen content of feed 

rations, manure management system, temperature, etc., the increase over time is mostly associated with 

the increase in finishing weights. As pigs are finished at heavier weights, in general, they spend more time 

in the grow-finish barn and produce more manure during their life. Since they are less efficient at 

converting feed into body mass as they mature, the manure excretion and thus emissions increase relative 

to the marginal increases in finish weight. The emissions associated with the application of this manure to 

cropland also increase with market weight. 

The relative contribution to the GWP of pig production from weaned piglets entering the grow-

finish decreases over the assessment period from 18 percent to 14 percent of the total. This is attributable 

to several factors including: increased number of piglets per litter and more efficient feed conversion by 

sows. 
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Figure 9. Relative contribution analysis for the national average GWP by major contributors. Impacts 
included in “others” are from the delivery of municipal water, transport of materials to the farm, and fuel 
use in the removal and application of manure to fields. Infrastructure refers only to the materials used to 
construct swine facilities. 

Figure 8. Contribution results for GWP per functional unit. 
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3.2 Energy use 
With the advent of more enclosed housing beginning in the Southeast in about 1975 (in terms of 

simulation years), the use of propane for temperature control and animal comfort increased, as shown in 

Figure 10. The relative contribution of heating to the overall footprint steadily declines as efficiency 

measures improve over time as shown by the medium dark blue bar. Figure 11 presents the contribution 

analysis in terms of the functional unit of 1 kg marketed LW; there is a strong correlation with corn 

production impacts that contribute to the feed impact. The increase beginning in 2005 is associated with 

introduction of lactose and distillers’ grains in swine rations (simulated rations from 2005 onward are 

based on UA nutritionist recommendations). The increase in energy beginning 2005 is a result of, 

primarily, drying of lactose and DDGs. This energy is not included in the corn production values shown, 

thus the correlation of energy use with LW pig stops in 2005. 

  

Figure 10. Results are shown for the national average energy use by major contributors. Impacts 
included in “others” are from the electricity grid, transport of materials to the farm, and other such 
minor water uses in the upstream supply chain. Infrastructure refers only to the construction 
materials used to construct swine facilities. 
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3.3 Water use 
Water use per kg LW is predominantly driven by irrigation water used in feed production, 

ranging from 77 to 91 percent of water use, depending on the year. The lack of precipitation in 1970 

drove up water use associated with corn as a result of increased irrigation. Irrigation water use in corn and 

soy production in the United States grew throughout the 1970s and combined with the expansion of 

heavily irrigated agriculture in Nebraska, water use per kg LW saw little improvement until 1985. 

Starting around this time, the water use began a consistent decline throughout the next several decades. 

Figure 12 shows the absolute contribution of different activities; again dominated by production of feed, 

with a strong correlation to expansion of corn irrigation. The increase in water use beginning in 2005 

shown in Figure 12 is largely attributable to the expansion of irrigated acreage, not to the introduction of 

distillers’ grains. The relative increase in cooling water usage, beginning in 1975 in Figure 12 is 

associated with the advent of modern housing. The relative increase in drinking water over time is 

attributed to the increase in finishing weights. Since feed consumption is strongly correlated with water 

Figure 11. Energy sector contribution to functional unit of 1 kg marketed LW. 
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consumption, and considering feed conversion is less efficient with age, the drinking water associated 

with a kg LW increases as the finishing weights increase. 

3.4 Land use 
As mentioned previously, land use is dominated by crop production for the animal ration. This in 

turn is primarily driven by corn and soy, and to a lesser extent, other ingredients. As discussed in more 

detail in the next section, there has been a steady and significant improvement in crop yield over the 

period of the study which is directly responsible for the significant reduction in land occupation 

associated with swine production.  shows the contribution of grow-finish rations and sow rations used for 

producing the piglets.  

 

Figure 12. Results are shown for the national average water use major contributors. Impacts included in 
“others” are from the electricity grid, transport of materials to the farm, and other such minor water uses 
in the upstream supply chain. Infrastructure refers only to the construction materials used to construct 
swine facilities. 
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Figure 13. Results are shown for the national average water use major contributors. Impacts included in 
“others” are from the electricity grid, transport of materials to the farm, and other such minor water uses 
in the upstream supply chain. Infrastructure refers only to the construction materials used to construct 
swine facilities. 

Figure 14. Land use contribution per functional unit. 
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3.5  Feed 
The effects of crop yield on energy use results (Figure 15-D) are similar to that of GWP (Figure 

15-C), where the fuel required to plant and harvest an acre of corn remains fairly consistent, so when 

yields are low the energy use per kg corn moves in tandem with GWP. As mentioned previously, there 

have been steady, aside from drought years, improvements in the environmental performance of the major 

crops used in swine rations. This is driven primarily by increased yields, as shown in Figure 15-A where 

there is steady decline in land occupation (the inverse of yield – corn = blue; soybean = orange). Except 

Figure 15. LCIA results for 1kg corn grain and soybean produced, on average, in the U.S. for each 
simulation year of the assessment. Impact categories are land use (m2a), water use (m3), energy use 
(MJ), and GWP (kg CO2e). 

A B 

C D 
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for water use for soybeans, which has steadily increased primarily because of larger fraction of total 

acreage under irrigation, both staple feeds show steady declines in environmental impact. This coupled 

with improved FCR for the animals is a significant source of overall improvement. 

Because the ration contributes approximately 50% of the impacts for global warming and energy 

consumption and 90% or more to the water and land use metrics, we present detailed contribution 

assessment of different feed ingredients to the impacts of the grow-finish and sow barn rations in the 

following figures (Figure 16 through Figure 23). These figures are each reporting the contribution 

assessment of the bar associated with the production of the feed for the grow-finish barn in the figures of 

the previous section. The feed contribution assessment for the sow barn is associated with the contribution 

of “piglets” to the corresponding chart in the previous section. The y-axis in each of the figures represents 

the absolute contribution to the full footprint of production of 1 kg LW at the farm gate, inclusive of cull 

sows’ contribution to the production total. The most striking results are in Figure 16, Figure 17, Figure 20 

and Figure 21 where the significant effect of adding lactose and distillers’ grains to the diet can be seen. It 

is noteworthy that the effect of addition of dry lactose (lighter green in the figures) to the rations in 2005, 

based on nutritionists’ recommendations, contributes more significantly to the global warming potential 

and energy use metrics than the distillers’ grains (darker green in the figures).  

The land and water use metrics are driven almost entirely by corn and soy production across the 

full simulation period; there are minor contributions from other activities, but these are generally minor, 

aside from dry whey, added to the ration in 2005 – 2015.  
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Figure 17. Energy use of production the grow-finish barn ration for 1 kg LW marketed. 

Figure 16. Global warming potential of production the grow-finish barn ration for 1 kg LW marketed. 
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Figure 19. Land use associated with production the grow-finish barn ration for 1 kg LW marketed. 

Figure 18. Water use of production the grow-finish barn ration for 1 kg LW marketed. 
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Figure 20. Global warming potential of production the sow barn ration for 1 kg LW marketed. 

Figure 21. Energy use for production the sow barn ration for 1 kg LW marketed. 
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Figure 22. Water use of production the sow barn ration for 1 kg LW marketed. 

Figure 23. Land use associated with production the sow barn ration for 1 kg LW marketed. 
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3.6 Background systems 
Several background systems were adapted via alterations made to existing USEI unit processes in 

order represent changes in production efficiency representative of individual simulation years. Overall, 

these changes had a positive impact on the environmental impacts associated with pig production. This 

effect is shown in Figure 25, which presents the energy use required to produce 1 kg of nitrogen for the 

national average mix in each simulation year overlaid with the types of fertilizer constituting the mix in 

each year, which presents the energy use required to produce 1 kg of nitrogen over time. There are two 

changes that happen simultaneously between simulation years that are causing the change in energy use: 

the changing mix of fertilizers used in corn and soy production and the decreasing energy requirements in 

nitrogen production. Combined, these two changes enable the production of nitrogen fertilizers to 

improve from 65 MJ/kg N in 1960 to 32 MJ/kg N in 2015. 

Another area of improvement in the background systems can be seen in the electricity grid Figure 

24. shows the production sources for electricity grid mix in each simulation year alongside the GWP of 1 

MJ electricity. Although no changes were made to individual power generation unit processes to represent 

changing efficiencies, the GWP of producing 1 MJ in the United States declined over the assessment 

period because of the changing mix of primary energy for electric power generation. The decline in coal-

Figure 24. Composition of primary fuel mix for electricity generation and average U.S. electric grid 
GWP 
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fired power, in addition to the rise in natural gas and renewables, has resulted in a decline in GWP for 

electricity production from 0.24 to 0.18 kg CO2e/ MJ over the assessment period. Thus, some of the 

improvement in swine performance is attributable to improvements in background systems. During the 

past 55 years, there have been major efforts to improve transportation and manufacturing energy 

efficiency, as well as shifts away from coal toward natural gas for electric power generation. These 

improvements were partially incorporated into the lifecycle inventory on a rolling average basis. 

3.6.1 Nitrogen fertilizer mix and production 
As shown in Figure 25, both the typical mix of nitrogen fertilizers and composition have changed 

markedly. The 2-fold reduction in energy consumption per kg N fertilizer is due to a combination of 

manufacturing efficiency as well as a shift to less energy intensive forms. 

In addition to the electricity mix and fertilizer production, improvements in transportation and 

tractor efficiency also played a role in the improvement of domestic live swine production. Improvements 

in these areas were modeled as linear regressions and as such, their contributions to impacts decline from 

Figure 25. The national consumption mix of nitrogen fertilizer in the U.S. graphed against the energy 
requirements to produce 1 kg N in each simulation year. 
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1960 to 2015 relative to their improvement percentages listed in Table 7. While some of these 

improvements are quite large, such as the 209 percent improvement in ocean transport, their overall 

contribution to the production of pigs is quite minor. 

3.7 National results 
Annual pork production increased by 84 percent from 1960 to 2015. The impact intensity (per kg 

LW) associated with that production has steadily declined (Table 9); however, because of the significant 

increase in production, three of the cumulative sector impacts have declined (GWP, energy and water), 

while land use generally decreased (Table 10 and Figure 26). The GWP, water use, and land use results 

track with sectoral output in production from 1960 to 1985. Cumulative water use breaks this trend in 

1990 by declining slightly from 1985 despite an increase in production. By 1995, GWP and energy use 

also begin declining, despite further increases in annual production. This trend is reversed by 2005, which 

was the simulation year in which DDGS were added to the rations. The dramatic increase in water use in 

2005 is coincidental to the addition of DDGS but is actually driven by higher water use in corn and 

soybean production. Despite producing nearly twice as much pork in 2015 as in 1960, the total land use 

associated with live animal production in the pork industry has continually declined. Steady gains in yield 

of corn and soybeans over this period were further amplified by the improvements in FCR of pigs. As a 

result, the pork supply chain occupies less than half of the land it did in 1960. 

Table 9. Production weighted environmental metrics per kg LW marketed. 

Year Water Use, 
m3/kg 

Land Use, 
m2a/kg 

GWP, 
kgCO2e/kg 

Energy Use, 
MJ/kg 

Production, 
kg LW 

1960 0.241 15.61 3.34 24.17 8.61E+09 
1965 0.228 12.20 3.10 24.59 8.27E+09 
1970 0.317 12.10 3.86 28.32 9.91E+09 
1975 0.317 10.25 3.37 24.05 7.63E+09 
1980 0.322 8.92 3.30 23.04 1.06E+10 
1985 0.253 7.24 3.52 25.04 9.13E+09 
1990 0.223 7.05 3.46 24.05 9.66E+09 
1995 0.183 6.36 2.98 19.21 1.11E+10 
2000 0.129 5.59 2.79 16.38 1.17E+10 
2005 0.226 4.44 3.07 22.93 1.24E+10 
2010 0.163 4.02 3.01 22.39 1.37E+10 
2015 0.180 3.77 3.08 22.47 1.58E+10 
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Table 10. Estimated cumulative environmental metrics for the entire production sector, from field-to-farm 
gate.   

Year Water Use, 
m3 

Land Use, 
acre 

GWP, 
kgCO2e 

Energy Use, 
MJ 

Production, 
kg LW 

1960 2.08E+09 3.32E+07 2.88E+10 2.08E+11 8.61E+09 
1965 1.88E+09 2.49E+07 2.56E+10 2.03E+11 8.27E+09 
1970 3.14E+09 2.96E+07 3.82E+10 2.81E+11 9.91E+09 
1975 2.42E+09 1.93E+07 2.57E+10 1.84E+11 7.63E+09 
1980 3.42E+09 2.34E+07 3.50E+10 2.45E+11 1.06E+10 
1985 2.31E+09 1.63E+07 3.22E+10 2.29E+11 9.13E+09 
1990 2.16E+09 1.68E+07 3.34E+10 2.32E+11 9.66E+09 
1995 2.02E+09 1.74E+07 3.30E+10 2.13E+11 1.11E+10 
2000 1.51E+09 1.61E+07 3.25E+10 1.91E+11 1.17E+10 
2005 2.81E+09 1.36E+07 3.81E+10 2.85E+11 1.24E+10 
2010 2.24E+09 1.36E+07 4.14E+10 3.08E+11 1.37E+10 
2015 2.85E+09 1.47E+07 4.88E+10 3.55E+11 1.58E+10 
actual 
change 37.4% -55.7% 69.5% 70.6% 83.6% 

 

Table 10 also shows the sector scale change in the environmental metrics compared to the change 

that would have occurred if the production intensity had remained constant at 1960 levels (i.e., an 83.6% 

increase across all metrics, based on the increase in production. Thus without the continual gains in 

efficiency, total cumulative impacts would be considerably larger today. 
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4 Conclusions 
This assessment of swine production presented a time series evaluation of the environmental 

sustainability quantified through GHG emissions, energy, water and land use. A significant effort to 

identify the many factors that were dynamically changing over the past 55 years led to creation of 

lifecycle inventory data used for simulation of fertilizer, crop and live animal production at five-year 

increments. The complexity of interactions among the changing parameters (i.e., background 

transportation and manufacturing efficiency, improved genetics of crops and animals, etc) make it 

difficult to identify and quantify specific factors driving the improvements observed. Broadly speaking, 

the adage, “A rising tide lifts all boats,” is apt. Nonetheless, there are some strong correlations that can be 

identified:  

• Land use improvement is driven primarily by the combination of factors leading to improved 

crop yields 

• Water use is also strongly tied to irrigation for crops 

• Feed conversion and daily gain contribute to reduction in all categories 

Figure 26. Annual pork production in the U.S. from 1960 to 2015 and the associated impacts. Pork 
production is shown in millions of pounds of LW pigs and is inclusive of market pigs and cull animals. 
Environmental impacts are presented in terms of the total industry impact to the farm gate relative to 
1960 levels 
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• The shift in housing beginning in the mid-1970s initially increased energy and greenhouse gas 

footprints, but efficiencies improved leading to a steady decline; increasing up to about 

30MJ/kg LW, and holding steady till 1985 and declining to a low of 17 before the introduction 

of dried distillers’ grains in the early 2000s led to an increase in energy consumption associated 

with the energy required for drying  

• The trend in greenhouse gas emissions is similar to that of energy, but in the 2000s shows a 

larger variation due to the regional feeding of distillers’ grains. GHG emissions decrease from 

approximately 

The United States swine industry has experienced many structural changes over the past 55 years. 

In addition, there have been continual improvements in the background supply chain supporting swine 

production. Within the industry, there has been a major shift from extensive to intensive production 

systems which initially increased environmental burden, but ultimately led to reductions through 

improved efficiencies: improved daily gain and feed conversion as well as increased fecundity and 

decreased mortality. There has also been a shift in the manure management practices, partially driven by 

the intensification of swine production over the period coupled with increased regulation. The 

environmental impacts per produced animal and kg LW have steadily declined since 1970 - 1980; 

however, because the total output of the sector has risen dramatically over the same period, there has been 

a slowly increasing cumulative environmental impact associated with entire sector driven by large growth 

of the sector output over the period. The sector level impact is estimated by weighted averaging of the 

simulated counties for each simulation year and aggregating to national production. It is important to 

recognize that without the significant gains in reducing the footprint intensity of production that 

has occurred in the past 55 years, the cumulative environmental impacts for the whole sector would 

be larger today.  If the footprint intensity had remained constant, the sector impacts would have 

increased in proportion to the increased production: 84%.  However, cumulative sector water use 

only increased by 37.4%; land use decreased by 55.7%; and GHG emissions and energy use 

increased by only 70%.   
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6 Appendix 

6.1 PPEFC input parameters 

 

Appendix Table 1. PPEFC grow-finish barn input parameters 

 1960 1965 1970 1975 

Variable All 
states 

All 
states 

All 
states Southeast North 

Central Southwest 

What is their weight when they enter 13 13 13 13 13 13 
What is their weight when they leave 200 210 220 222 232 227 
Roof height 10 10 10 10 10 10 
Max allowable approach to outside temp 0 0 0 6 0 0 
R value of walls 0 0 0 10 0 0 
R value of roof 0 0 0 10 0 0 
Fan throughput 0 0 0 22000 0 0 
Fan Max Throughput 2 0 0 0 12000 0 0 
Fan Max Throughput 3 0 0 0 12000 0 0 
Fan power 0 0 0 746 0 0 
Fan Power 2 0 0 0 373 0 0 
Fan Power 3 0 0 0 373 0 0 
Outside temp to start cooling cells 0 0 0 0 0 0 
Outside temp to start sprinklers 0 0 0 86 0 0 
Hours per day lights are on 0 0 0 5 0 0 
Heater BTU per hr per hd 0 0 0 900 0 0 
Manually set ADG value 1.45 1.45 1.22 1.22 1.28 1.27 
Manually set FCR value 4.32 4.32 4.15 4.15 4.43 4.17 
ME_adjustement_factor 2.2 2.1 1.7 1.7 2 1.9 
max_protein_dep_adjustment_factor 0.02 0.02 0.06 0.07 0.01 0.05 
Mortality rate in grow-finish barn % 1.8 1.8 1.8 2.2 1.5 2.4 
Days for cleanup between groups 5 5 5 ` 5 5 
Number of fans of type 1 0 0 0 25 0 0 
Number of fans of type 2 0 0 0 20 0 0 
Number of fans of type 3 0 0 0 20 0 0 
first day of phase 1 1 1 1 1 1 1 
first day of phase 2 19 19 61 61 50 59 
first day of phase 3 39 39 107 107 87 102 
first day of phase 4 64 64 0 0 0 0 
Barn Temperature Control open open open drop curtain open open 
Do you use cooling cells no no no no no no 
Do you use water drip or sprinkle no no no sprinkler no no 
Heating source for barn none none none propane none none 
Pig space cu ft per pig 14 12 12 12 12 12 
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Appendix Table 1 continued. 

 1980 1985 1990 

Variable Southeast North 
Central Southeast North 

Central All states 

What is their weight when they enter 13 13 13 13 13 
What is their weight when they leave 220 227 220 227 249 
Roof height 10 10 10 10 10 
Max allowable approach to outside temp 6 0 6 6 6 
R value of walls 10 0 20 10 20 
R value of roof 10 0 20 10 20 
Fan throughput 22000 0 22000 22000 22000 
Fan Max Throughput 2 12000 0 12000 12000 12000 
Fan Max Throughput 3 12000 0 12000 12000 12000 
Fan power 746 0 746 746 746 
Fan Power 2 373 0 373 373 373 
Fan Power 3 373 0 373 373 373 
Outside temp to start cooling cells 0 0 0 0 0 
Outside temp to start sprinklers 86 0 86 86 86 
Hours per day lights are on 5 0 5 5 5 
Heater BTU per hr per hd 900 0 900 900 900 
Manually set ADG value 1.29 1.42 1.3 1.3 1.31 
Manually set FCR value 3.84 3.68 3.8 3.8 3.83 
ME_adjustement_factor 1.5 1.6 1.6 1.6 1.6 
max_protein_dep_adjustment_factor 0.2 0.22 0.2 0.2 0.2 
Mortality rate in grow-finish barn % 2.2 1.5 1.8 1.8 2.1 
Days for cleanup between groups 5 5 5 5 5 
Number of fans of type 1 25 0 25 25 25 
Number of fans of type 2 20 0 20 20 20 
Number of fans of type 3 20 0 20 20 20 
first day of phase 1 1 1 1 1 1 
first day of phase 2 58 53 83 83 82 
first day of phase 3 101 92 0 0 0 
first day of phase 4 0 0 0 0 0 
Barn Temperature Control drop curtain open tunnel vent tunnel vent tunnel vent 
Do you use cooling cells no no no no no 
Do you use water drip or sprinkle sprinkler no sprinkler sprinkler sprinkler 
Heating source for barn propane none propane propane propane 
Pig space cu ft per pig 9 8 8 8 8 
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Appendix Table 1 continued. 

 1995 2000 2005 2010 2015 
Variable All states All states All states All states All states 
What is their weight when they enter 13 13 13 13 13 
What is their weight when they leave 256 262 269 268.7 281.2 
Roof height 10 10 10 10 10 
Max allowable approach to outside temp 6 6 6 6 6 
R value of walls 20 20 20 20 20 
R value of roof 20 20 20 20 20 
Fan throughput 22000 22000 22000 22000 22000 
Fan Max Throughput 2 12000 12000 12000 12000 12000 
Fan Max Throughput 3 12000 12000 12000 12000 12000 
Fan power 746 746 746 746 746 
Fan Power 2 373 373 373 373 373 
Fan Power 3 373 373 373 373 373 
Outside temp to start cooling cells 0 0 0 0 0 
Outside temp to start sprinklers 86 86 86 86 86 
Hours per day lights are on 5 5 5 5 5 
Heater BTU per hr per hd 900 900 900 900 900 
Manually set ADG value 1.7 1.69 1.6 1.5 1.61 
Manually set FCR value 3.23 3.03 2.82 2.6 2.58 
ME_adjustement_factor 1.7 1.55 1.35 1.25 1.25 
max_protein_dep_adjustment_factor 0.43 0.555 0.65 0.75 0.75 
Mortality rate in grow-finish barn  % 2.2 2.75 1.8 4.41 8.34 
Days for cleanup between groups 5 5 5 5 5 
Number of fans of type 1 25 25 25 25 25 
Number of fans of type 2 20 20 20 20 20 
Number of fans of type 3 20 20 20 20 20 
first day of phase 1 1 1 1 1 1 
first day of phase 2 64 64 68 72 67 
first day of phase 3 102 103 109 109 101 
first day of phase 4 0 0 0 146 136 
Barn Temperature Control tunnel vent tunnel vent tunnel vent tunnel vent tunnel vent 
Do you use cooling cells no no no no no 
Do you use water drip or sprinkle sprinkler sprinkler sprinkler sprinkler sprinkler 
Heating source for barn propane propane propane propane propane 
Pig space cu ft per pig 8 8 8 8 8 
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Appendix Table 2. PPEFC sow barn input parameters. 

 1960 1965 1970 1975 

Variable 
All states All states All states Southeast North 

Central Southwest 

Delivery distance for gilts 100 100 100 100 100 100 
Piglets surviving to weaning 7 7.2 7.3 7.6 7.2 7.6 
Piglets deaths before weaning 3 2.9 2.5 1.6 1.4 1.6 
Roof height 10 10 10 10 10 10 
Max target temperature in barn 0 0 0 80 80 80 
Min target temperature in barn 0 0 0 60 60 60 
Max approach to outside temp 0 0 0 6 6 6 
R value of walls 0 0 0 20 10 20 
R value of roof 0 0 0 20 10 20 
Fan throughput 0 0 0 22000 22000 22000 
Fan Max Throughput 2 0 0 0 12000 12000 12000 
Fan Max Throughput 3 0 0 0 12000 12000 12000 
Fan power 0 0 0 746 746 746 
Fan Power 2 0 0 0 373 373 373 
Fan Power 3 0 0 0 373 373 373 
Outside temp for cooling cells 0 0 0 85 85 85 
Outside temp for sprinklers 0 0 0 0 0 0 
Hours per day lights are on 0 0 0 15 15 15 
Heater BTU per hr per hd 0 0 0 3500 3500 3500 
Days between delivery of gilts 7 7 7 7 7 7 
Average age of incoming gilts 120 180 120 120 120 120 
Days between sow culling 6 6 6 6 6 6 
Age piglets removed  21 21 21 21 21 21 
Weaning to insemination 16 16 16 16 16 16 
Days of piglet heater use 5 5 5 5 5 5 
Number of fans of type 1 0 0 0 25 25 25 
Number of fans of type 2 0 0 0 20 20 20 
Number of fans of type 3 0 0 0 20 20 20 
Gilt replacement rate % 50 50 50 50 50 50 
Sows culled % 47 47 47 47 47 47 
Barn Temperature Control open open open tunnel vent drop curtain tunnel vent 
Cooling cells no no no no no no 
Water drip or sprinkle no no no no no no 
Do you use piglet heaters heat lamps heat lamps heat lamps heat lamps heat lamps heat lamps 
Heating source for barn none none none none propane propane 
Pig space cu ft per pig 40 24 24 24 24 24 
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Appendix Table 2 continued. 

  1980 1985 1990 1995 

Variable 
Southeast North 

Central Southeast North 
Central All states All states 

Delivery distance for gilts 100 100 100 100 100 100 
Piglets surviving to weaning 7.6 7.4 7.3 7.2 8.37 8.49 
Piglets deaths before weaning 1.6 2.8 2.4 1.4 1.97 1.53 
Roof height 10 10 10 10 10 10 
Max target temperature in barn 80 80 80 80 80 80 
Min target temperature in barn 60 60 60 60 60 60 
Max approach to outside temp 6 6 6 6 6 6 
R value of walls 20 10 10 10 20 20 
R value of roof 20 10 10 10 20 20 
Fan throughput 22000 22000 22000 22000 22000 22000 
Fan Max Throughput 2 12000 12000 12000 12000 12000 12000 
Fan Max Throughput 3 12000 12000 12000 12000 12000 12000 
Fan power 746 746 746 746 746 746 
Fan Power 2 373 373 373 373 373 373 
Fan Power 3 373 373 373 373 373 373 
Outside temp for cooling cells 85 85 85 85 85 85 
Outside temp for sprinklers 0 0 0 0 0 0 
Hours per day lights are on 15 15 15 15 15 15 
Heater BTU per hr per hd 3500 3500 3500 3500 3500 3500 
Days between delivery of gilts 7 7 7 7 7 7 
Average age of incoming gilts 120 120 120 120 120 120 
Days between sow culling 6 6 6 6 6 6 
Age piglets removed  21 36 21 21 29 26 
Weaning to insemination 16 16 16 16 16 16 
Days of piglet heater use 5 5 5 5 5 5 
Number of fans of type 1 25 25 25 25 25 25 
Number of fans of type 2 20 20 20 20 20 20 
Number of fans of type 3 20 20 20 20 20 20 
Gilt replacement rate % 50 50 50 50 50 50 
Sow culled % 44 44 44 44 44 41 
Barn Temperature Control tunnel vent drop curtain tunnel vent drop curtain tunnel vent tunnel vent 
Cooling cells no no no no no no 
Water drip or sprinkle no no no no no no 
Do you use piglet heaters heat lamps heat lamps heat lamps heat lamps heat lamps heat lamps 
Heating source for barn none propane propane propane propane propane 
Pig space cu ft per pig 14 14 14 14 14 14 
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Appendix Table 2 continued. 

  2000 2005 2010 2015 
Variable All states All states All states All states 
Delivery distance for gilts 100 100 100 100 
Piglets surviving to weaning 8.77 9.38 10 10 
Piglets deaths before weaning 1.98 2.46 3 3.5 
Roof height 10 10 10 10 
Max target temperature in barn 80 80 80 80 
Min target temperature in barn 60 60 60 60 
Max approach to outside temp 6 6 6 6 
R value of walls 20 20 20 20 
R value of roof 20 20 20 20 
Fan throughput 22000 22000 22000 22000 
Fan Max Throughput 2 12000 12000 12000 12000 
Fan Max Throughput 3 12000 12000 12000 12000 
Fan power 746 746 746 746 
Fan Power 2 373 373 373 373 
Fan Power 3 373 373 373 373 
Outside temp for cooling cells 85 85 85 85 
Outside temp for sprinklers 0 0 0 0 
Hours per day lights are on 15 15 15 15 
Heater BTU per hr per hd 3500 3500 3500 3500 
Days between delivery of gilts 7 7 7 7 
Average age of incoming gilts 120 120 120 120 
Days between sow culling 6 6 6 6 
Age piglets removed  19 19 21 22 
Weaning to insemination 16 16 16 16 
Days of piglet heater use 5 5 5 5 
Number of fans of type 1 25 25 25 25 
Number of fans of type 2 20 20 20 20 
Number of fans of type 3 20 20 20 20 
Gilt replacement rate % 50 50 50 50 
Sow culled % 38 49 47 47 
Barn Temperature Control tunnel vent tunnel vent tunnel vent tunnel vent 
Cooling cells no no no no 
Water drip or sprinkle no no no no 
Do you use piglet heaters heat lamps heat lamps heat lamps heat lamps 
Heating source for barn propane propane propane propane 
Pig space cu ft per pig 14 14 14 14 
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6.2 National Aggregation Procedure 
State burden per pig is calculated only for counties simulated - production weighted average of counties 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

=
∑ �#𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑ �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

Average state burden for all marketed animals:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=
#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
 

Where, NASSLWProduction is the total mass of marketed animals in the state, which includes both finished 
pigs and culled sows. The state average burden is used for state level assessment, and the calculations 
below are, separately, used for national (or sector) level assessment. 

Weighted estimate for national burden per finished pig based only on states simulated 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

=
∑ �#𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∑ �#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

National burden per kg live weight: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=
#𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
 

Appendix Table 3. PPEFC farm inputs. Farm inputs are shared by both grow and sow barns. 

Variable All states/years 

Distance to feed mill 60 
Wet feed delivered per load 46000 
 percent from well 50 
 percent piped in 30 
 percent from other 20 
Depth of well 80 
HP of pump 7.5 
Max flowrate of pump 180 
 percent solids in manure to fields 6.2 
Distance to fields 3.5 
Manure per truckload 40000 
Dead animal disposal Incinerating 
Manure transport method Tank Trucks 
Pump type for umbilical hose Electric 
 percent manure removed when emptied (all systems but subfloor) 90 
Days between subfloor cleanouts 10 
First day of the year on which manure is emptied 91 
Second day of the year on which manure is emptied 244 
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